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Booster Beam Loss Monitors are supported by a local application called BLMS that 
accumulates dose measurements from each BLM according to the Booster reset type of the 
cycle on which the measurements are made. This note describes how it is done.

BLMS dose accumulations
Each 15 Hz cycle, a determination is made of which Booster cycle reset occurred at the 

start of the cycle. The function HaveEvt is called for each possible Booster reset event number 
until one is found whose bit is set in the clock events bit array maintained by the system. The 
valid Booster reset events are the following:

11, 12, 13, 14, 15, 16, 17, 19, 1C, 1D

Separate accumulations are made for each reset type and for each BLM. With 
accommodations for up to 16 BLMs in one node, using two 8-channel Swift digitizer 
modules, there are 160 separate accumulations maintained using the above list of 10 valid 
reset events. These accumulations are placed into the data pool covering a range of 160 
consecutive analog channels—out of a typical total of 1024 allocated for each IRM node. If 
only 12 BLMs are used, say, there are gaps of unused channels in the range of 160. These 
gaps are reserved for additional sums in the case that more BLMs are added. If additional 
Booster reset events are added, the total list will be longer than 160 channels, 16 channels 
longer for each additional reset event.

The sums are measured over a selected period of time and are updated multiple times during 
this period. For example, a period of 60 minutes may be used, so that the sums represent data 
accumulated over the last hour. These hourly sums may be updated every 5 minutes, so that 
12 sets of partial sums must be maintained in order to be able to update the long term sums 
that often. Currently, a maximum of 16 updates are allowed per long term period. (This limit 
can easily be increased if needed.)

The long term sums are cleared when the BLMS local application starts up. During the first 
long term period, then, the sums might be observed to increase for each partial update. Once 
the first long term period is over, the sums should follow the relative beam losses that the 
BLMs measure, updated after every partial period. (If the ramping behavior during the first 
long term period is undesirable, a modified scheme can be used without this effect.)

The behavior of the long term sums will be such that an unusual spike of beam loss will 
influence the long term sum to the same extent for the entire long term period, after which its 
influence is lost. In addition, one may have to wait for as long as a partial sum period before 
the impact of a spike is seen on the long term sum. 

Another scheme of maintaining a continuously-updated running sum may be used instead, if 
desired, in which a spike would have a declining influence in the long term sum over time; 
after the long term period, its influence would have dropped to 1/e (0.368) of its initial 
influence. Whichever method is used, for tuning purposes, one would presumably use the 
instantaneous beam loss measurements captured on a selected reset event of interest rather 
than any long term summation.

Independent of which long term summation scheme is used, comparing beam loss between 
different Booster resets must take into account how many of each reset event occurred during 
the long term period. If the long term period is too short (as in the example shown used for 



testing), an error of one reset event in the long term period may be significant. (The long term 
period is based upon time, not, say, upon supercycles.)

Because of the wide range of potential beam loss occurring during one Booster acceleration 
cycle, the BLM hardware signal is a log of the integrated beam loss measurement during the 
33 ms Booster acceleration cycle. Because a log amplifier is used, an offset is applied on 
purpose. (It’s hard to take the log of zero.) In dealing with these readings, it is desirable to 
remove the offset. Since the BLM data comes into the IRM as a waveform, and recognizing 
that the waveform is an integrated signal, the log value is converted to a loss (in units of 
rads/sec) at the end of the acceleration cycle and at the start of the cycle before beam in 
injected, and the difference of these two losses provides the values that are summed. The 
conversion is done via table lookup, since all BLMs obey the same conversion formula:

rads/sec = 0.00721196*Exp(1.0057772*volts)

Separate sums are accumulated for each BLM on each 15 Hz cycle, according to the reset 
event number of that cycle.

BLMS parameters

E LOCAL APPS      07/11/00 1434
NODE<06C3>  NTRY< 5>/64  H<0508>
NAME=BLMS   CNTR=95  DT= 0    MS
TITL"BOOSTER BEAM LOSS MONTRS"
SVAR=000417F0     07/10/00 1545
ENABLE  B<00B0>*BLMS ENABLE
INIT INX <0001>
FINL INX <01B8>
BLM     C<0200> BLMTS0 0    vlts
#BLMS    <0002>
PART #CY <0100>
#PARTS   <0006>
SUMS    C<0210>  0
         <0000>
         <0000>

Following the enable bit parameter that all local application instances use, the two indexes 
specify the zero-based word index values that cover the Booster acceleration cycle. If the 
Swift digitizer operates at 12.5 KHz to capture the waveforms, beginning at the reset event 
time that occurs 2 ms before BMIN, the initial value might be near 0, and the final index might 
be near 440, or 0x01B8. This corresponds to a time of  35.2 ms after the reset event time, or 
33.2 ms after Booster beam injection. The intent is to sample the value measured just after 
accelerated Booster beam is extracted.

The analog channel number associated with the first BLM is determined by the configuration 
data in the CINFO system table. This is how BLMS determines where the waveform data is to 
be found in memory space. The BLMs used in a node are assumed to be assigned consecutive 
channel numbers. If a second 8-channel Swift digitizer module is used, its channels should 
follow the first eight, allowing for up to 16 channels. The parameter specifying the number of 
BLMs determines how many channels will be processed, beginning at the initial channel. For 
the case shown above, only two BLM signals were actually connected in this test node.

The number of 15 Hz cycles specifies the length of the partial period. The number of these 
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periods (“parts”) determines the long term period. In the test node case shown above, the 
partial period was about 17 seconds, and the long term period was about 100 seconds. To 
establish a partial period of 5 minutes and a long term period of one hour, use PART #CY 
<1194> and #PARTS <000C>. (These hex values correspond to 4500 cycles and 12 partial 
periods.)

The sums are exhibited as analog channel readings. The initial channel for these output 
values is specified. The number of channels used is 16 times the number of clock events used. 
As described above, this is 160 channels for 10 clock events. The order of these channels is the 
number of BLMs in use for the first clock event followed by the BLMs in use for the second 
clock event, etc, with gaps to make room for those BLMs not in use. The sums for the first 
BLM will therefore be found at channels 0200, 0210, 0220, etc, in the above example, 
corresponding to clock events 11, 12, 13, etc. The sums for the second BLM will be at 
channels 0201, 0211, 0221, etc.

Floating point sums and alarms
The sums are computed in floating point, of course. Because of the wide range of 

possible beam losses, it is impractical to convert these into 16-bit values as has been done for 
all IRM channel readings heretofore. Additional support has therefore been added to the 
IRM system software for floating point raw data. An analog channel may be configured to 
have floating point values of integer values. If it is designated a floating point channel, its 
data is housed in a parallel table to the usual ADATA (Analog Data) table. The parallel table 
has space to hold floating point values for reading, setting, nominal and tolerance values. 
The floating point values are assumed to be in engineering units; there is no “raw” version 
that exists. These data are “born” in engineering units; they have no other form. Suitable 
Acnet primary and common transforms must be used to reflect this.

Along with adding a new table that houses floating point data values, the alarm scanning 
task was modified to support them as well. If a channel is designated floating point, then 
alarm checking is done using floating point comparisons. 

Because of the nature of beam loss sums, alarm checking will naturally specify minimum and 
maximum values rather than the usual nominal and tolerance values. The minimum value is 
likely to be zero, and the maximum value will be a value of the long term sum above which 
an alarm message is desired. As soon as the loss improves, and the sum drops below that 
maximum threshold, one would wish the alarm system to indicate the losses are “good.” As 
a result, the new minimum and maximum alarm checking logic does not exhibit the 
“hysteresis” behavior that it does for the nominal and tolerance cases, in which a channel in 
the “bad” alarm state does not regain “good” status until the reading falls within half the 
tolerance amount. The new min/max logic can also be used for integer channels.

The designation of a channel as floating point is done via bit 12 of the alarm flags word field 
in the ADATA table entry. The designation of min/max alarm checking logic is done by setting 
bit 5 of the same alarm flags word. The Acnet analog alarm block handling in both RETDAT 
and SETDAT will be modified to deal with these new options. Another note deals with these 
details.
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